Sparse Recovery
نویسنده
چکیده
List of included articles [1] H. Rauhut. Random sampling of sparse trigonometric polynomials. Appl. Comput. [2] S. Kunis and H. Rauhut. Random sampling of sparse trigonometric polynomials II-orthogonal matching pursuit versus basis pursuit. [3] H. Rauhut. Stability results for random sampling of sparse trigonometric polynomi-als. [4] H. Rauhut. On the impossibility of uniform sparse reconstruction using greedy methods. Atoms of all channels , unite! Average case analysis of multi-channel sparse recovery using greedy algorithms.
منابع مشابه
A New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملA New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملWeighted sparse recovery with expanders
We derived the first sparse recovery guarantees for weighted l1 minimization with sparse random matrices and the class of weighted sparse signals, using a weighted versions of the null space property to derive these guarantees. These sparse matrices from expender graphs can be applied very fast and have other better computational complexities than their dense counterparts. In addition we show t...
متن کاملSparse Recovery on Euclidean Jordan Algebras
We consider the sparse recovery problem on Euclidean Jordan algebra (SREJA), which includes sparse signal recovery and low-rank symmetric matrix recovery as special cases. We introduce the restricted isometry property, null space property (NSP), and s-goodness for linear transformations in s-sparse element recovery on Euclidean Jordan algebra (SREJA), all of which provide sufficient conditions ...
متن کاملSparse recovery and Fourier sampling
In the last decade a broad literature has arisen studying sparse recovery, the estimation of sparse vectors from low dimensional linear projections. Sparse recovery has a wide variety of applications such as streaming algorithms, image acquisition, and disease testing. A particularly important subclass of sparse recovery is the sparse Fourier transform, which considers the computation of a disc...
متن کاملSparse signal recovery using sparse random projections
Sparse signal recovery using sparse random projections
متن کامل