Sparse Recovery

نویسنده

  • Holger Rauhut
چکیده

List of included articles [1] H. Rauhut. Random sampling of sparse trigonometric polynomials. Appl. Comput. [2] S. Kunis and H. Rauhut. Random sampling of sparse trigonometric polynomials II-orthogonal matching pursuit versus basis pursuit. [3] H. Rauhut. Stability results for random sampling of sparse trigonometric polynomi-als. [4] H. Rauhut. On the impossibility of uniform sparse reconstruction using greedy methods. Atoms of all channels , unite! Average case analysis of multi-channel sparse recovery using greedy algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New IRIS Segmentation Method Based on Sparse Representation

Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...

متن کامل

A New IRIS Segmentation Method Based on Sparse Representation

Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...

متن کامل

Weighted sparse recovery with expanders

We derived the first sparse recovery guarantees for weighted l1 minimization with sparse random matrices and the class of weighted sparse signals, using a weighted versions of the null space property to derive these guarantees. These sparse matrices from expender graphs can be applied very fast and have other better computational complexities than their dense counterparts. In addition we show t...

متن کامل

Sparse Recovery on Euclidean Jordan Algebras

We consider the sparse recovery problem on Euclidean Jordan algebra (SREJA), which includes sparse signal recovery and low-rank symmetric matrix recovery as special cases. We introduce the restricted isometry property, null space property (NSP), and s-goodness for linear transformations in s-sparse element recovery on Euclidean Jordan algebra (SREJA), all of which provide sufficient conditions ...

متن کامل

Sparse recovery and Fourier sampling

In the last decade a broad literature has arisen studying sparse recovery, the estimation of sparse vectors from low dimensional linear projections. Sparse recovery has a wide variety of applications such as streaming algorithms, image acquisition, and disease testing. A particularly important subclass of sparse recovery is the sparse Fourier transform, which considers the computation of a disc...

متن کامل

Sparse signal recovery using sparse random projections

Sparse signal recovery using sparse random projections

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009